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This paper investigates a numerical method for solving three-body integral equations. The 
method is a tinite element approach similar to that of Hammerlin et al. which utilizes an 
approximating surface in three-dimensional space, commonly referred to as “Coons’ patches” 
or “blending functions.” However. unlike Hammerlin et al. who use smoothest splines the 
present paper uses a basis of Co piecewise polynomial functions. Numerical accuracy of the 
approximation is tested in a single-variable three-boson model at bound energies and scatter- 
ing threshold. It is shown that the method converges to exact three-body solutions, and that 
the rate of convergence is much faster than a usual tensor product of Co piecewise polynomial 
functions. The blending function approximation can be used to construct finite-rank separable 
approximations of the three-body amplitude, which should be of use in four-body 
calculations. ‘c 1987 Academic Press. Inc. 

1. INTR~DUCTT~N 

System of three or more particles can be described by solving integral equations 
[l-3]. Although several numerical methods are available for solving such equations 
[4], these methods are difficult to apply to problems that have more than one con- 
tinuous variable [IS]. A remarkably successful approach has been to reduce the 
dimension (number of continuous variables) of the multiparticle equation by 
introducing a finite-rank separable approximation in the subsystem amplitudes [6]. 
In this way one can reduce the problem of solving a complicated multidimensional 
integral equation co that of solving coupled one-dimensional integral equations. 

Even with the considerable simplification introduced by the separable 
approximation, it has not been possible to continue calculations further than the 
four-body problem [7]. Several methods for constructing separable approximations 
of the three-body amplitude have been investigated [S-12]. Often these methods 
require a contour rotation technique [ 131 in order to avoid singularities at positive 
three-body energies. Nevertheless, separable approximations have proved a 
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valuable aid for solving four-body integral equations that desribe both nuclear 
[ 14-151 and atomic [16] systems. 

Thus far, useful finite-rank approximations of the three-body amplitude are based 
on the use of global elements. Finite elements, such as splines [17], can, however, 
be used to solve integral equations [IS]. Indeed, the finite element method has 
been used successfully for the numerical treatment of integral equations that arise in 
few-body problems [19-241. It is of interest, therefore, to investigate the utility of 
separable expansions based on the use of finite elements. 

The present method is based on a surface approximation devised by Coons 
[25-27-J, sometimes called Coons’ patches, and applied in later work to the 
numerical treatment of integral equations [28-29). (Throughout this paper we shall 
adopt the term “blending function” rather than “Coons’ patches.“) Reference [28] 
uses smoothest splines as a basis for constructing blending functions. Our approach 
is based on the use of piecewise Lagrange polynomials. The basis functions in this 
case are Co functions. 

The purpose of the present paper is to investigate the utility of the blending 
function method for solving integral equations that describe quantum few-body 
systems. The order of convergence is one criterion which determines the utility of 
the method. Another is the accuracy of the solution for a given mesh spacing. In 
practice one seeks an accurate solution to the integral equation using a small 
number of basis functions. 

We shall consider a model problem of three identical spin-zero bosons interacting 
via rank-one separable potentials. Using this model, the three-body Faddeev 
integral equations reduce to a Lippmann-Schwinger-type integral equation, which 
we shall refer to as the Amado-Lovelace [30] equation. Our numerical method for 
solving the Amado-Lovelace equation is first to approximate the effective potential 
by a blending function. The Amado--Lovelace equation then reduces to algebraic 
equations, which we solve. The result is a matrix of coefficients for a finite-rank 
separable approximation of the three-body amplitude. 

Our main reason for choosing Co basis functions to solve the Amado-Lovelace 
equation is that the approximating surface can be determined from function values 
that lie entirely within the domain of the kernel of the integral equations. This is 
not the case, for example, with the smoothest splines used in Ref. [28]. To con- 
struct the approximating surface for smoothest splines of order ~2 > 2 requires 
additional information such as derivative information on the boundary of the 
domain, or function values on an extended domain (see Ref. [28 1). Since this 
additional information is difficult to obtain it makes sense to use the Co basis 
functions. It should also be remarked that Co functions are simpler than smoothest 
splines and are therefore easier to work with. 

Section 2 describes the blending function. A general procedure is given for solving 
integral equations of the second kind. Section 3 describes the application of the 
blending function method to the Amado-Lovelace integral equation. Our numerical 
results are given in Section 4, and a summary is given in Section 5. 
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2. PROCEDURE FOR INTEGRAL EQUATIONS 

This section describes the blending function and also the kernel approximation 
method for solving integral equation of the second kind. For simplicity, and to 
illustrate the method, we consider the homogeneous integral equation 

q(s) = - c” Kis, 1) .f( r) dt, Ei.lj 

where the continuous kernel K(s, t) is defined on the square [a, /3] x [ix, jI?J En 
general, there are an infinite sequence of numbers (ni j and corresponding eigen- 
functions (f!;3 that solve Eq. (2.1). 

To begin, we partition the interval [cc, /I] by II $ 1 nodal points ( ri j;‘i : where 
ci=fl<tI< .” <t,+, = j?. The only restriction is that the number of subintervals 
n = (m - I) I, where I is the number of elements. On this partition we define a set of 
II -t I linearly independent functions (di)yr,’ satisfying the condition di(fi) = 6,. 
Each function Qli(s) is a piecewise polynomial of order IYI (degree m - I). We restrict 
our discussion to a uniform mesh with spacing h. For polynomials of degree ~2 - 1 
we consider an interval [O, (m - 1 j II] which contains 177 noda points 0: 
h, . . . . (.nr - 1) h. The interval is spanned by m basis functions (~J~jy~ r. We give as an 
example the functions for m = 2, 

q5,(sj = 1 -s/h, 

d,(s, = sib. 
(2.2 i 

The functions for 172 = 3 and 4 are given in Ref. [24]. Basis functions for rr! = 2, 3, 
and 4 are illustrated in Fig. 1. Notice that each nodal point has one (and ony one) 
non-zero basis function. Since the mesh is uniform we can use the 177 functions 

{cJ%~):“!~ to construct the entire set (cJ~~};Z,‘. 
We seek a finite dimensional approximation of the bivariate function K(s; t). An 

operator Q,? will map K onto the usual tensor product space 

where 

xii = K(ri, t,). i2.q 

An alternative approximation, and one that we shall be concerned with in this 
paper, is defined by the operator R,, which maps the kernel K onto a blending 
function 
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FIG. 1. Basis functions {+,}y=, for (a) linear, (b) quadratic, and (c) cubic polynomials. 

The blending function (Eq. (2.5)) can achieve a better approximation of the 
function K((s, t) than the tensor product (Eq. (2.3)). This is because the blending 
function uses more information from the functions K(s, I) than does the tensor 
product. While the tensor product interpolates from a set of points (sj, tjj, the 
blending function interpolates from a network of lines in the (s, t)-plane. 

For the purpose of solving integral equations it is convenient to rewrite Eq. (2.5) 
in a more compact form. As in [28] we define extended basis functions 

L(s) = g,- 
{ 

i= 1, . . . . n + 1, 

3 I (n+lJ 
) i = n + 2, . . . . 2n + 2, 

Vi(S) zz 
1 

4As) j=l ) . ..) n + 1, 
K(tj-(ft+ 1)t s, j = n + 2, . . . . 2n + 2, 

and introduce a matrix B = (,Gb), i, j= 1, . . . . 2n + 2, defined by 

(2.6) 

(2.7) 
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Here A = (aV), I= (6,), and 0 is the zero matrix, where 1, j= 1, .,., n c 1. With this 
notation Eq. (2.5) becomes 

2n+2 2n+2 

RKb, t)= c c P&(s) Vj(f). (2.8i 

i=l .;= 1 

We remark that if the kernel is symmetric, that is, K(s, I) = K(t, s), then ii = qi. 
Next we turn to the integral equation (2.1). The approximation is to replace the 

kernel K in Eq. (2.1) by the projection R,K defined by Eq. (2.8). Following the 
procedure of Ref. [28] we obtain 

211 + 2 211 + 2 

jLfts)= - 1 C Pkiifsi vjt (2.9 j 

i=l j=l 

where 

s 
a “j = qj(t)f(t) dt. ;2.10,) ? 

Equations (2.9) and (2.10) can be rewritten in the form of an eigenvalue problem, 
namely 

An = Mu. (2.11) 

Here L’ is the column vector v= (v,, ~12, . . . . v~,,+~)~ and A4 is a (2n+2)x (2n+2) 
matrix given by 

M= -PB, (2.12) 

where P = (Pg), i, j = 1, . . . . 2n + 2 is the inner product 

P,= r” qi(s) i,(s) ds. (2.13) 
yx 

Let {vi)z!’ be the 212 + 2 eigenvalues of the matrix M. Since the eigenvalue 
problem (2.11) represents a discretization of the integral equation (2.1)? the 
eigenvalues of the matrix M may be regarded as approximations to 2n i- 2 of the 
eigenvalues ( Ai > of Eq. (2.1). The eigenvector d, = ( di, !, di.2, . . . . di.*, + 1 )‘, cm-e- 
sponding to the eigenvalue vi, yields the function 

j= I 

which may be regarded as an approximation to the eigenfunction fi of Eq. (2.1 
corresponding to the eigenvalue vi. 
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To evaluate the inner product (2.13) we must integrate the kernel K of Eq. (2.1). 
These integrals are performed using a standard Gauss-Legendre quadrature 
formula. Although a quadrature can destroy the order of convergence of the 
method, it has been pointed out in Ref. [28] that the order of convergence should 
be maintained if the quadrature rule has at least the same order of convergence as 
the blending function method. Some of the inner products involve only the basis 
functions {$i);z,‘. We provide an exact expression for the matrix elements 

pQ = f” bits) djCs) ils, (2.15) 
“I 

where i, j= 1, . . . . n + 1. These elements are defined by m x nz matrices. For n? = 2 

(2.16) 

The matrices for 172 = 3 and 4 are given in Ref. [24]. Further details can be found 
for example in Strang and Fix [3 11. 

Finally, we can say something about the rate of convergence of the above 
method. We assume that the kernel has continuous derivatives of order at least 2~. 
Although the numerical method described above is different from that of 
Hammerlin et al. [28-291 we may expect the blending function approximation to 
yield roughly the same numerical results. The expected numerical errors in the 
eigenvalue using the blending function method are O(hZm) [28-291. This contrasts 
favorably with the tensor approximation, which has a rate of convergence 
O(hm) [32]. 

3. APLICATIONS TO THE THREE-BODY SYSTEM 

In this section we use blending functions to construct finite-rank approximations 
of the three-body amplitude. In order to test the utility of the method for solving 
integral equations that arise in few-body problems we consider a simple model 
problem of three identical spin-zero bosons interacting via a separable pairwise 
potential. It will be assumed that this potential can support a single two-body 
bound state. We shall restrict our discussion to the angular momentum I= 0 case. 
Also, the energy is restricted to scattering threshold and the three-body bound state 
region. 

We use the variable q to denote the relative two-particle momentum, and use p to 
denote the relative momentum of one particle with respect to the center-of-mass of 
the remaining pair. For the case of a rank-one separable two-body potential, and 
after partial wave decomposition, the Amado-Lovelace integral equation takes the 
single-channel form 

x(p, p’; E) = U@, p’; Ej -; Lrn V@, p”; E) X(p”, p’; E) D(p”; E)p”‘dp”, (3.1) 
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where E is the total three-body energy. The solution XCp, p’; E) of Eq. (3.1) is 
proportional to the three-body amplitude. Our normalizations are chosen SC that 
the s-wave phase shift, 6(k), for elastic scattering at incident momentum k is given 
by 

(3.2) 

Here the scattering energy is 

E=Jk2-b 4 2 

and b is the (positive) two-body binding energy. 
The scattering length a is defined by 

13.3 :B 

a = $X(0,0; - 6). (3.4 

Three-body bound states lie in the energy region E < -b. These bound states satisfy 
the homogeneous form of Eq. (3,l). Let @,.Cp) be the three-body vertex function. 
This function satisfies the homogeneous integral equation 

@r(P) = -% r u@,p’; -B,) DCy’; -B,) @,@r)p’2cip’, 

where B, is the (positive) three-body binding energy, and I’ labels the bound state. 
The function U(p, p’; E) is an energy-dependent effective three-body potential 

defined by the integral 

up, p’; E) = - 
s 

I Q(q1) 4342) 4 
- , p2 + pf2 f pp’J - E’ 

where 

(3.6) 

q1= (i&J’ +p’2 +pp’.I’)” 2: (3.7) 

q2 = cp’ + ip” +pp’yy, (3.8) 

and Q(q) is a two-body vertex function. 
For our simple model problem we choose a Yamaguchi 1331 potential. This sim- 

ple potential does not adequately describe the nucleon-nucleon interaction [S]. 
For this purpose more refined finite-rank potentials have been developed [34]. In 
our case we employ the Yamaguchi potential in order to simplify the three-body 
equations for the purpose of numerical calculations. 

The two-body vertex function is 

(3.8) 
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where v is a range parameter and 

where y = J&. 
The function D@; E) is 

c = [2yv(y + v)‘] l;2, 

D(p; E)=S[($p’-E)“‘]($p2-b-E)-‘, 

where, for the Yamaguchi potential, 

sit) = i:” + VI2 
1’(Y+v)c1+2~~/(v+5)1’ 

(3.9) 

(3.10) 

(3.11) 

Before we apply the blending function, it is convenient first to map the momentum 
variable p onto a finite interval. We use the mapping 

(3.12) 

where XE [ - 1, 11. Next, we symmetrize Eq. (3.1). We define 

T(x, x’; Ej = CO(~) x(p, p’; Ej u(p’j, 

0(x, x’; E) = w(p) V(p, p’; E) co($), 

where 

dP(x))= (1 -x) J!u [D@(x); E)]“? 

(3.13) 

(3.14) 

(3.15) 

In this notation Eq. (3.1) becomes 

&y, x’; E) = 0(.x, x’; E) - ; j’ , 8(x, x”; E) 2(x”, x’; E) dx”. (3.16) 

To conclude this section we briefly describe the blending function method for 
solving Eq. (3.16). Following the procedure described in Section 2, we approximate 
the Function 8 by the blending function R,, rJ where 

2n+2 2nr2 

R, t&v, x’; E) = c 1 B:,(E) ii(x) YI/-(x’). (3.17) 
i=l jsl 

The solution functions w can be approximated by 

2n+2 2n+2 

R,,z(x, x’; E) = c 1 X,(E) &(x) I@‘), 
ix1 j-1 

(3.18) 
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where the matrix X= (X,) is a solution of the algebraic equations 

(3.19) 

Notice that expression (3.18) is a finite-rank approximation of the three-body 
amplitude. Three-body bound states are found by solving Eq. (3.16) when the first 
term on the right-hand side is set to zero. Our method for solving the homogeneous 
equation exactly follows the procedure described in Section 2. 

4. NUMERICAL RESULTS 

This section gives our numerical results for the blending function method. Results 
for an approximation method using tensor product are also shown for the purpose 
of comparison. All calculations are performed on a CDC Cyber 750 computer in 
single precision. 

In order to check our algorithm for solving integral equations we have solved a 
simple test problem [ 18, 28 J. This test problem is the homogeneous integra! 
equation (2.1) defined on the interval [0, l] with 

K(s. t) = -sin 
[ 

(4.1) 

The largest eigenvalue for this problem is given by 0.5 + 71-l = 0.81830989. The 
eigenvalue equation (2.11) is solved using IMSL subroutine EIGRF. Tables I-III 
show the error in the eigenvalue using both tensor product and blending function 
approximations. Results for this simple test problem are close to those obtained by 
Hammerlin et al. [ 18,281 but are not exactly the same because the basis functions 
are different from those used by Hammerlin. 

We calculate the rate of convergence as follows: Suppose e(h) is the error when iz 
is the mesh spacing. Then 

e(h) w c/z”, (4.2) 

TABLE I 

Errors in the First Eigenvalue for the test Problem Using m = 2 

n 3 6 12 

Tensor 3.7( -2) 9.3(-3) 1-J-3) 
Blending 4.3c. -4) 2.7(-5j i.7(-6) 
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TABLE II 

Errors in the First Eigenvalue for the Test Problem Using ~1= 3 

II 4 8 16 32 

Tensor 
Blending 

-6.6(-5) -2.2( -6) -l.O(-7) -6.1( -9) 
1.3( -9) 1.5(-12) - - 

where c is an unknown constant and /? is the rate of convergence. By halving the 
mesh size and taking the ratio of errors, e(tr)/e(h/2), we can eliminate c. We obtain 

/? 2 [lag(2)] - ‘ log e(h) [ 1 - 
e(h/2) ’ 

Table IV shows the calculated rates of convergence p obtained from errors 
corresponding to the smallest values of h (largest n) shown in Tables I-III, respec- 
tively. These values agree with theoretical estimates in the case of linear and cubic 
polynomials. The quadratics do better than expected from theoretical estimates. In 
fact, for smoothest splines, the quadratics are known [IS, 291 to exhibit supercon- 
vergence. However, the anomalously large convergence rate of 9.8 for blending 
functions is probably due to the fact that the error reaches machine accuracy for 
n > 8, as indicated in Table II. 

Next, we turn to the Amado-Lovelace integral equation and linite-rank separable 
approximations of the three-body amplitude. The exact solution of this problem is 
not known. The integral equation can be solved only by approximate numerical 
methods. For our numerical example we have chosen nuclear scales. We set h'/m = 
41.468 MeV .fm2. The two-body parameters are chosen to be 1’ = 1.4498 fm-’ and 
h = 2.225 MeV. With this choice of parameters, the three-boson system has two 
bound states: a ground state and a first excited state lying close to the scattering 
threshold. 

Tables V-X show the approximate three-body binding energies and scattering 
lengths. Results using the tensor product approximation (Eqs. (2.2))(2.3)) are 
shown in Tables V, VII, and IX. We remark that the difference between these 
results and those of Ref. [24] is due to the symmetric structure of the integral 
equation (3.16). In addition, for the scattering length we now approximate the 
inhomogenous term of the integral equation (3.16). These differences have only a 

TABLE III 

Errors in the First Eigenvalue for the Test Problem Using ITI = 4 

n 3 6 12 

Tensor -1.4(-3) -9.4(-5) -6.O( -6) 
Blending 6.2( -7) 2.7( -9) l.l( -11) 
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TABLE IV 

Rates of convergence 

,,7 2 3 Lj. 
-__ 

Tensor 2.0 4.0 4.0 
Blending 4.0 9.8 7.9 

TABLE \: 

Ground State Energy (MeV) Using Tensor Approximation 

,I 

i?, 12 24 48 

2 14.566181 25.269322 25.4j1416 
3 25.454157 25.509093 25.511526 
4 25.551912 25.515364 25.512933 

TABLE VI 

Ground State Energy (MeV) Using 
Blending Function Approximation 

m 6 12 ‘4 

2 25.447224 25.597869 25.512453 
3 25.403113 25.512827 25.512750 
4 25.269358 25.511525 25.512763 

TABLE VII 

Fist Excited State Energy (MeV j Using Tensor Approximation 

m 12 24 48 

2 2.266521 2.351936 2.37166i 
3 2.386100 2.378640 2.378364 
4 2.381812 2.379723 2.378640 
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TABLE VIII 

First Excited State Energy (MeV) Using 
Blending Function Approximation 

2 2.229549 2.372894 2.378184 
3 2.322340 3.378298 2.378507 
3 2.350965 2.378441 2.378507 

small effect on calculated values. Results using the blending function approximation 
(Eq. (2.8)) are shown in Tables VI, VIII, and X. 

For a given number of mesh intervals n the blending function approach leads to 
twice as many algebraic equations as the method based on tensor product 
approximation. In order to make a useful comparison between the two methods 
one should compare results that are obtained by solving roughly the same number 
of algebraic equations. We may take agreement in results from polynomials of 
different order nz as an indication of the accuracy of the approximation. 

Since exact results are not available, we estimate the rates of convergence as 
follows: Supposef(h) is the approximate solution when h is the grid size. Then 

f(hj =f+ ch”, (4.4) 

where f is the unknown value, c is a constant, and B is the rate of convergence. By 
halving the mesh size twice we can eliminate the constants f and c. We obtain 

P fi IIlogi2)1~- L 1% f(hl -SW) ir; 1 (I*&)) -f(h//4) (4.5 j 

Equation (4.5) gives an indication of the rate of convergence, provided that I? is 
sufficiently small and f(h), .f(/z/2), and f (h/4) are monotone. 

Table XI shows the estimated rates of convergence p for each of the examples 

TABLE IX 

Scattering Length (fm) Using Tensor Approximation 

M 12 34 48 

2 24.833632 21.377110 20.651261 
3 20.501988 20.430349 20.420145 
4 20.121943 20.403308 20.418411 
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TABLE X 

Scattering Length (fm) Using Blending Function Approximation 

n 

m 6 12 24 

2 21.689002 20.191116 20.423928 
3 21.694881 20.425429 20.319455 
4 22.281788 20.427806 20.419459 

tabulated in Tables V-X. These results are in general agreement with resuits 
obtained from our simple test problem (see Table IV). Our results show that the 
blending function method has a higher rate of convergence than the method based 
on tensor product approximation. 

5. SUMMARY 

We have solved the three-body problem using a finite element approach. 
Blending functions yield accurate numerical solutions and. in addition, may be used 
to construct finite-rank separable approximations of the three-body amplitude. We 
have shown in these examples that the rates of convergence for the blending 
function method are superior to a tensor product of piecewise Lagrange 
polynomials. 

One disadvantage of the blending function method is that a numerical 
quadrature must be used to evaluate some of the inner products (2.13). For a 
coarse mesh (n = 6) the accuracy of the blending function method is not 
significantly better than the tensor product of piecewise Lagrange polynomials. On 
the other hand, for a fine mesh (II = 24) the additional cost in CPU time of using 
blending functions rather than Lagrange functions is offset by the higher accuracy 
solutions. 

We now discuss the application of the present method to few-body problems. In 
the Faddeev-Yakubovskii approach the four-body problem is described by an 
integral equation that has a kernel which is constructed by first solving the three- 

TABLE XI 

Estimated Rates of Convergence 

I,? v VI VII VIII IX x 

2 1.95 3.73 2.12 4.76 5.18 4.16 
3 3.98 Not monotone 4.16 8.07 2.81 1.73 
4 3.91 7.61 0.95 8.70 4.2: 7.80 
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body problem. The blending function approximation of the three-body amplitude 
(3.18) is a surface interpolant that can be used to compute the four-body kernel in 
an accurate and efficient manner. The success of the blending function 
approximation of the three-body amplitude reported in this paper strongly suggests 
that the method will be useful in finite element solutions of the four-body integral 
equation. 
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